Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
1.
Nat Mater ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594486

RESUMO

DNA origami is capable of spatially organizing molecules into sophisticated geometric patterns with nanometric precision. Here we describe a reconfigurable, two-dimensional DNA origami with geometrically patterned CD95 ligands that regulates immune cell signalling to alleviate rheumatoid arthritis. In response to pH changes, the device reversibly transforms from a closed to an open configuration, displaying a hexagonal pattern of CD95 ligands with ~10 nm intermolecular spacing, precisely mirroring the spatial arrangement of CD95 receptor clusters on the surface of immune cells. In a collagen-induced arthritis mouse model, DNA origami elicits robust and selective activation of CD95 death-inducing signalling in activated immune cells located in inflamed synovial tissues. Such localized immune tolerance ameliorates joint damage with no noticeable side effects. This device allows for the precise spatial control of cellular signalling, expanding our understanding of ligand-receptor interactions and is a promising platform for the development of pharmacological interventions targeting these interactions.

2.
Adv Sci (Weinh) ; : e2400492, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569466

RESUMO

The cooperative diagnosis of non-coding RNAs (ncRNAs) can accurately reflect the state of cell differentiation and classification, laying the foundation of precision medicine. However, there are still challenges in simultaneous analyses of multiple ncRNAs and the integration of biomarker data for cell typing. In this study, DNA framework-based programmable atom-like nanoparticles (PANs) are designed to develop molecular classifiers for intra-cellular imaging of multiple ncRNAs associated with cell differentiation. The PANs-based molecular classifier facilitates signal amplification through the catalytic hairpin assembly. The interaction between PAN reporters and ncRNAs enables high-fidelity conversion of ncRNAs expression level into binding events, and the assessment of in situ ncRNAs levels via measurement of the fluorescent signal changes of PAN reporters. Compared to non-amplified methods, the detection limits of PANs are reduced by four orders of magnitude. Using human gastric cancer cell lines as a model system, the PANs-based molecular classifier demonstrates its capacity to measure multiple ncRNAs in living cells and assesses the degree of cell differentiation. This approach can serve as a universal strategy for the classification of cancer cells during malignant transformation and tumor progression.

3.
Food Sci Nutr ; 12(4): 2917-2931, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628198

RESUMO

Sinapic acid (SA) is renowned for its many pharmacological activities as a polyphenolic compound. The cause of polycystic ovary syndrome (PCOS), a commonly encountered array of metabolic and hormonal abnormalities in females, has yet to be determined. The present experiment was performed to evaluate the antifibrotic properties of SA in rats with letrozole-induced PCOS-related ovarian fibrosis. SA treatment successfully mitigated the changes induced by letrozole in body weight (BW) (p < .01) and relative ovary weight (p < .05). Histological observation revealed that SA reduced the number of atretic and cystic follicles (AFs) and (CFs) (p < .01), as well as ovarian fibrosis, in PCOS rats. Additionally, SA treatment impacted the serum levels of sex hormones in PCOS rats. Luteinizing hormone (LH) and testosterone (T) levels were decreased (p < .01, p < .05), and follicle-stimulating hormone (FSH) levels were increased (p < .05). SA administration also decreased triglyceride (TG) (p < .01) and total cholesterol (TC) levels (p < .05) and increased high-density lipoprotein cholesterol (HDL-C) levels (p < .01), thereby alleviating letrozole-induced metabolic dysfunction in PCOS rats. Furthermore, SA treatment targeted insulin resistance (IR) and increased the messenger RNA (mRNA) levels of antioxidant enzymes in the ovaries of PCOS rats. Finally, SA treatment enhanced the activity of peroxisome proliferator-activated receptor-γ (PPAR-γ), reduced the activation of transforming growth factor-ß1 (TGF-ß1)/Smads, and decreased collagen I, α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF) levels in the ovaries of PCOS rats. These observations suggest that SA significantly ameliorates metabolic dysfunction and oxidative stress and ultimately reduces ovarian fibrosis in rats with letrozole-induced PCOS.

4.
Sci Total Environ ; 927: 172306, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593884

RESUMO

As the derivatives of p-phenylenediamines (PPDs), PPD quinones (PPDQs) have received increasing attention due to their possible exposure risk. We compared the intestinal toxicity of six PPDQs (6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ and IPPDQ) in Caenorhabditis elegans. In the range of 0.01-10 µg/L, only 77PDQ (10 µg/L) moderately induced the lethality. All the examined PPDQs at 0.01-10 µg/L did not affect intestinal morphology. Different from this, exposure to 6-PPDQ (1-10 µg/L), 77PDQ (0.1-10 µg/L), CPPDQ (1-10 µg/L), DPPDQ (1-10 µg/L), DTPDQ (1-10 µg/L), and IPPDQ (10 µg/L) enhanced intestinal permeability to different degrees. Meanwhile, exposure to 6-PPDQ (0.1-10 µg/L), 77PDQ (0.01-10 µg/L), CPPDQ (0.1-10 µg/L), DPPDQ (0.1-10 µg/L), DTPDQ (1-10 µg/L), and IPPDQ (1-10 µg/L) resulted in intestinal reactive oxygen species (ROS) production and activation of both SOD-3::GFP and GST-4::GFP. In 6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ, and/or IPPDQ exposed nematodes, the ROS production was strengthened by RNAi of genes (acs-22, erm-1, hmp-2, and pkc-3) governing functional state of intestinal barrier. Additionally, expressions of acs-22, erm-1, hmp-2, and pkc-3 were negatively correlated with intestinal ROS production in nematodes exposed to 6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ, and/or IPPDQ. Therefore, exposure to different PPDQs differentially induced the intestinal toxicity on nematodes. Our data highlighted potential exposure risk of PPDQs at low concentrations to organisms by inducing intestinal toxicity.


Assuntos
Caenorhabditis elegans , Quinonas , Espécies Reativas de Oxigênio , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Quinonas/toxicidade , Permeabilidade , Fenilenodiaminas/toxicidade , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Mucosa Intestinal/metabolismo , 60435
5.
Chem Commun (Camb) ; 60(34): 4609-4612, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38586987

RESUMO

A novel ECL immunosensor was developed for simultaneous determination of multiplex bladder cancer markers. DNA tetrahedra act as capture probes, while Ru-MOF@AuNPs and AuAgNCs act as signal reporters, yielding well-separated signals reflecting NUMA1 and CFHR1 concentrations. This strategy offers a new platform for clinical immunoassays, enabling simultaneous multiplex tumor marker detection.

6.
Int Immunopharmacol ; 132: 111924, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531201

RESUMO

BACKGROUND: T helper (Th) cell imbalances have been associated with the pathophysiology of sepsis, including the Th1/Th2 and Th17/T regulatory cells (Treg) paradigms. Cold-inducible RNA-binding protein (CIRP), a novel damage-associated molecular pattern (DAMP) was reported that could induce T cell activation, and skew CD4+ T cells towards a Th1 profile. However, the effect and underlying mechanisms of CIRP on Th17/Treg differentiation in sepsis still remains unknown. METHODS: A prospective exploratory study including patients with sepsis was conducted. Blood samples were collected from patients on days 0, 3 and 7 on admission. The serum CIRP and peripheral blood Treg/Th17 percentage was determined by ELISA and flow cytometry. CD4+ T cells from the spleen and lymph nodes of mice with experimental sepsis were collected after treatment with normal saline (NS), recombinant murine CIRP (rmCIRP) and C23 (an antagonist for CIRP-TLR4) at late stage of sepsis. RNA-seq was conducted to reveal the pivotal molecular mechanism of CIRP on Treg/Th17 differentiation. Naïve CD4+ T cell was isolated from the Tlr4 null and wildtype mice in the presence or absence rmCIRP and C23 to confirmed above findings. RESULTS: A total of 19 patients with sepsis finally completed the study. Serum CIRP levels remained high in the majority of patients up to 1 week after admittance was closely associated with high Treg/Th17 ratio of peripheral blood and poor outcome. A univariate logistic analysis demonstrated that higher CIRP concentration at Day 7 is an independent risk factor for Treg/Th17 ratio increasing. CIRP promotes Treg development and suppresses Th17 differentiation was found both in vivo and in vitro. Pretreated with C23 not only alleviated the majority of negative effect of CIRP on Th17 differentiation, but also inhibited Treg differentiation, to some extent. Tlr4 deficiency could abolish almost all downstream effects of rmCIRP. Furthermore, IL-2 is proved a key downstream molecules of the effect CIRP, which also could amplify the activated CD4+ T lymphocytes. CONCLUSIONS: Persistent high circulating CIRP level may lead to Treg/Th17 ratio elevated through TLR4 and subsequent active IL-2 signaling which contribute to immunosuppression during late phases of sepsis.

7.
Anal Chem ; 96(13): 5178-5187, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38500378

RESUMO

Accurate, ultrasensitive, and point-of-care (POC) diagnosis of the African swine fever virus (ASFV) remains imperative to prevent its spread and limit the losses incurred. Herein, we propose a CRISPR-Cas12a-assisted triplex amplified colorimetric assay for ASFV DNA detection with ultrahigh sensitivity and specificity. The specific recognition of recombinase aided amplification (RAA)-amplified ASFV DNA could activate the Cas12a/crRNA/ASFV DNA complex, leading to the digestion of the linker DNA (bio-L1) on magnetic beads (MBs), thereby preventing its binding of gold nanoparticles (AuNPs) network. After magnetic separation, the release of AuNPs network comprising a substantial quantity of AuNPs could lead to a discernible alteration in color and significantly amplify the plasmonic signal, which could be read by spectrophotometers or smartphones. By combining the RAA, CRISPR/Cas12a-assisted cleavage, and AuNPs network-mediated colorimetric amplification together, the assay could detect as low as 0.1 copies/µL ASFV DNA within 1 h. The assay showed an accuracy of 100% for the detection of ASFV DNA in 16 swine tissue fluid samples, demonstrating its potential for on-site diagnosis of ASFV.


Assuntos
Vírus da Febre Suína Africana , Nanopartículas Metálicas , Animais , Suínos , Vírus da Febre Suína Africana/genética , Sistemas CRISPR-Cas/genética , Ouro , Sistemas Automatizados de Assistência Junto ao Leito , Hidrolases , Recombinases , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico
8.
Org Biomol Chem ; 22(13): 2677, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477554

RESUMO

Expression of Concern for 'Conjugation of substituted naphthalimides to polyamines as cytotoxic agents targeting the Akt/mTOR signal pathway' by Zhi-Yong Tian et al., Org. Biomol. Chem., 2009, 7, 4651-4660, https://doi.org/10.1039/B912685F.

9.
Nat Mater ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448659

RESUMO

Thrombosis is a leading global cause of death, in part due to the low efficacy of thrombolytic therapy. Here, we describe a method for precise delivery and accurate dosing of tissue plasminogen activator (tPA) using an intelligent DNA nanodevice. We use DNA origami to integrate DNA nanosheets with predesigned tPA binding sites and thrombin-responsive DNA fasteners. The fastener is an interlocking DNA triplex structure that acts as a thrombin recognizer, threshold controller and opening switch. When loaded with tPA and intravenously administrated in vivo, these DNA nanodevices rapidly target the site of thrombosis, track the circulating microemboli and expose the active tPA only when the concentration of thrombin exceeds a threshold. We demonstrate their improved therapeutic efficacy in ischaemic stroke and pulmonary embolism models, supporting the potential of these nanodevices to provide accurate tPA dosing for the treatment of different thromboses.

10.
J Extracell Vesicles ; 13(3): e12423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491216

RESUMO

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common life-threatening syndrome with no effective pharmacotherapy. Sepsis-related ARDS is the main type of ARDS and is more fatal than other types. Extracellular vesicles (EVs) are considered novel mediators in the development of inflammatory diseases. Our previous research suggested that endothelial cell-derived EVs (EC-EVs) play a crucial role in ALI/ARDS development, but the mechanism remains largely unknown. Here, we demonstrated that the number of circulating EC-EVs was increased in sepsis, exacerbating lung injury by targeting monocytes and reprogramming them towards proinflammatory macrophages. Bioinformatics analysis and further mechanistic studies revealed that vascular cell adhesion molecule 1 (VCAM1), overexpressed on EC-EVs during sepsis, activated the NF-κB pathway by interacting with integrin subunit alpha 4 (ITGA4) on the monocyte surface, rather than the tissue resident macrophage surface, thereby regulating monocyte differentiation. This effect could be attenuated by decreasing VCAM1 levels in EC-EVs or blocking ITGA4 on monocytes. Furthermore, the number of VCAM1+ EC-EVs was significantly increased in patients with sepsis-related ARDS. These findings not only shed light on a previously unidentified mechanism underling sepsis-related ALI/ARDS, but also provide potential novel targets and strategies for its precise treatment.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Monócitos , Sepse , Molécula 1 de Adesão de Célula Vascular , Humanos , Lesão Pulmonar Aguda/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Monócitos/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Sepse/complicações , Sepse/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Sci Total Environ ; 922: 171220, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38412880

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ), a transformation product of tyre-derived 6-PPD, has been frequently detected in different environments. After 6-PPDQ exposure, we here aimed to examine dynamic lung bioaccumulation, lung injury, and the underlying molecular basis in male BALB/c mice. After single injection at concentration of 4 mg/kg, 6-PPDQ remained in lung up to day 28, and higher level of 6-PPDQ bioaccumulation in lung was observed after repeated injection. Severe inflammation was observed in lung after both single and repeated 6-PPDQ injection as indicated by changes of inflammatory cytokines (TNF-α, IL-6 and IL-10). Sirius red staining and hydroxyproline content analysis indicated that repeated rather than single 6-PPDQ injection induced fibrosis in lung. Repeated 6-PPDQ injection also severely impaired lung function in mice by influencing chord compliance (Cchord) and enhanced pause (Penh). Proteomes analysis was further carried out to identify molecular targets of 6-PPDQ after repeated injection, which was confirmed by transcriptional expression analysis and immunohistochemistry staining. Alterations in Ripk1, Fadd, Il-6st, and Il-16 expressions were identified to be associated with inflammation induction of lung after repeated 6-PPDQ injection. Alteration in Smad2 expression was identified to be associated with fibrosis formation in lung of 6-PPDQ exposed mice. Therefore, long-term and repeated 6-PPDQ exposure potentially resulted in inflammation and fibrosis in lung by affecting certain molecular signals in mammals. Our results suggested several aspects of lung injury caused by 6-PPDQ and provide the underlying molecular basis. These observations implied the possible risks of long-term 6-PPDQ exposure to human health.


Assuntos
Lesão Pulmonar , Masculino , Camundongos , Humanos , Animais , Lesão Pulmonar/induzido quimicamente , Camundongos Endogâmicos BALB C , Proteômica , Pulmão/patologia , Inflamação/patologia , Fibrose , Quinonas , Mamíferos
12.
J Am Chem Soc ; 146(9): 6317-6325, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391280

RESUMO

Repetitive sequences, which make up over 50% of human DNA, have diverse applications in disease diagnosis, forensic identification, paternity testing, and population genetic analysis due to their crucial functions for gene regulation. However, representative detection technologies such as sequencing and fluorescence imaging suffer from time-consuming protocols, high cost, and inaccuracy of the position and order of repetitive sequences. Here, we develop a precise and cost-effective strategy that combines the high resolution of atomic force microscopy with the shape customizability of DNA origami for repetitive sequence-specific gene localization. "Tri-block" DNA structures were specifically designed to connect repetitive sequences to DNA origami tags, thereby revealing precise genetic information in terms of position and sequence for high-resolution and high-precision visualization of repetitive sequences. More importantly, we achieved the results of simultaneous detection of different DNA repetitive sequences on the gene template with a resolution of ∼6.5 nm (19 nt). This strategy is characterized by high efficiency, high precision, low operational complexity, and low labor/time costs, providing a powerful complement to sequencing technologies for gene localization of repetitive sequences.


Assuntos
DNA , Sequências Repetitivas de Ácido Nucleico , Humanos , DNA/genética , DNA/química , Mapeamento Cromossômico , Microscopia de Força Atômica/métodos , Conformação de Ácido Nucleico , Nanotecnologia/métodos
13.
Appl Microbiol Biotechnol ; 108(1): 67, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183487

RESUMO

Aquaculture has suffered significant financial losses as a result of the infection of zoonotic Aeromonas hydrophila, which has a high level of resistance to classic antibiotics. In this study, we isolated an A. hydrophila strain B3 from diseased soft-shelled turtle (Pelodiscus sinensis), which is one of the most commercially significant freshwater farmed reptiles in East Asia, and found that A. hydrophila was its dominant pathogen. To better understand the inhibition effect and action mechanism of Chinese herbs on A. hydrophila, we conducted Chinese herbs screening and found that Lonicera japonica had a significant antibacterial effect on A. hydrophila B3. Experimental therapeutics of L. japonica on soft-shelled turtle showed that the supplement of 1% L. japonica to diet could significantly upregulate the immunity-related gene expression of soft-shelled turtle and protect soft-shelled turtle against A. hydrophila infection. Histopathological section results validated the protective effect of L. japonica. As the major effective component of L. japonica, chlorogenic acid demonstrated significant inhibitory effect on the growth of A. hydrophila with MIC at 6.4 mg/mL. The in vitro assay suggested that chlorogenic acid could inhibit the hemolysin/protease production and biofilm formation of A. hydrophila and significantly decrease the expression of quorum sensing, biofilm formation, and hemolysin-related genes in A. hydrophila. Our results showed that the Chinese herb L. japonica would be a promising candidate for the treatment of A. hydrophila infections in aquaculture, and it not only improves the immune response of aquatic animals but also inhibits the virulence factor (such as biofilm formation) expression of A. hydrophila. KEY POINTS: • A. hydrophila was the dominant pathogen of the diseased soft-shelled turtle. • L. japonica can protect soft-shelled turtle against A. hydrophila infection. • Chlorogenic acid inhibits the growth and biofilm formation of A. hydrophila.


Assuntos
Lonicera , Animais , Aeromonas hydrophila/genética , Ácido Clorogênico , Proteínas Hemolisinas , Répteis , Antibacterianos/farmacologia , Biofilmes
14.
J Hazard Mater ; 465: 133183, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38070267

RESUMO

Tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) are widely distributed brominated flame retardants. While TBBPA has been demonstrated to stimulate adipogenesis, TBBPS is also under suspicion for potentially inducing comparable effects. In this study, we conducted a non-targeted metabolomics to examine the metabolic changes in 3T3-L1 cells exposed to an environmentally relevant dose of TBBPA or TBBPS. Our findings revealed that 0.1 µM of both TBBPA and TBBPS promoted the adipogenesis of 3T3-L1 preadipocytes. Multivariate analysis showed significant increases in glycerophospholipids, sphingolipids, and steroids relative levels in 3T3-L1 cells exposed to TBBPA or TBBPS at the final stage of preadipocyte differentiation. Metabolites set composed of glycerophospholipids was found to be highly effective predictors of adipogenesis in 3T3-L1 cells exposed to TBBPA or TBBPS (revealed from the receiver operating characteristic curve with an area under curve > 0.90). The results from metabolite set enrichment analysis suggested both TBBPA and TBBPS exposures significantly perturbed steroid biosynthesis in adipocytes. Moreover, TBBPS additionally disrupted the sphingolipid metabolism in the adipocytes. Our study presents new insights into the obesogenic effects of TBBPS and provides valuable information about the metabolites associated with adipogenesis induced by TBBPA or TBBPS.


Assuntos
Adipogenia , Metabolismo dos Lipídeos , Bifenil Polibromatos , Animais , Camundongos , Células 3T3-L1 , Diferenciação Celular , Glicerofosfolipídeos/farmacologia
15.
Plant Cell Environ ; 47(4): 1128-1140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38093692

RESUMO

High temperatures (>24°C) prevent the development of a yellow peel on bananas called green ripening, owing to the inhibition of chlorophyll degradation. This phenomenon greatly reduces the marketability of banana fruit, but the mechanisms underlining high temperature-repressed chlorophyll catabolism need to be elucidated. Herein, we found that the protein accumulation of chlorophyll catabolic enzyme MaSGR1 (STAY-GREEN 1) was reduced when bananas ripened at high temperature. Transiently expressing MaSGR1 in banana peel showed its positive involvement in promoting chlorophyll degradation under high temperature, thereby weakening green ripening phenotype. Using yeast two-hybrid screening, we identified a RING-type E3 ubiquitin ligase, MaRZF1 (RING Zinc Finger 1), as a putative MaSGR1-interacting protein. MaRZF1 interacts with and targets MaSGR1 for ubiquitination and degradation via the proteasome pathway. Moreover, upregulating MaRZF1 inhibited chlorophyll degradation, and attenuated MaSGR1-promoted chlorophyll degradation in bananas during green ripening, indicating that MaRZF1 negatively regulates chlorophyll catabolism via the degradation of MaSGR1. Taken together, MaRZF1 and MaSGR1 form a regulatory module to mediate chlorophyll degradation associated with high temperature-induced green ripening in bananas. Therefore, our findings expand the understanding of posttranslational regulatory mechanisms of temperature stress-caused fruit quality deterioration.


Assuntos
Musa , Temperatura , Musa/genética , Musa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005617

RESUMO

Gold nanoparticles (Au NPs) have become one of the building blocks for superior assembly and device fabrication due to the intrinsic, tunable physical properties of nanoparticles. With the development of DNA nanotechnology, gold nanoparticles are organized in a highly precise and controllable way under the mediation of DNA, achieving programmability and specificity unmatched by other ligands. The successful construction of abundant gold nanoparticle assembly structures has also given rise to the fabrication of a wide range of sensors, which has greatly contributed to the development of the sensing field. In this review, we focus on the progress in the DNA-mediated assembly of Au NPs and their application in sensing in the past five years. Firstly, we highlight the strategies used for the orderly organization of Au NPs with DNA. Then, we describe the DNA-based assembly of Au NPs for sensing applications and representative research therein. Finally, we summarize the advantages of DNA nanotechnology in assembling complex Au NPs and outline the challenges and limitations in constructing complex gold nanoparticle assembly structures with tailored functionalities.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Nanotecnologia
17.
Tob Induc Dis ; 21: 150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026501

RESUMO

INTRODUCTION: Traditional Chinese medicine (TCM) may have special advantages in facilitating smoking cessation, but consensus on effectiveness is lacking. We aim to comprehensively review, update, and refine current evidence on TCM effectiveness and safety. METHODS: Nine databases were searched from their inception up to 28 February 2023. Systematic reviews (SRs) and meta-analysis of TCM for smoking cessation were identified and retrieved. Additional databases and hand searches of RCTs from included SRs were performed for data pooling. Cochrane ROB tools and AMSTAR-2 were used to evaluate the methodological quality of RCTs and SRs, respectively. RCT data are presented as relative risks (RR) or mean differences (MD) with 95% confidence intervals (CI) using RevMan 5.4. RESULTS: Thirteen SRs involving 265 studies with 33081 participants were included. Among these 265 studies, 157 were duplicates (58.36%) and 52 were non-RCTs (19.62%). Combined with the remaining 56 RCTs identified through hand searches, 88 RCTs involving 12434 participants were finally included for data synthesis. All the SRs focused on acupoint stimulation, and the majority were of low or very low quality. The methodological quality of RCTs was either unclear or high risk. For continuous abstinence rate, TCM external interventions were better than placebo in 6 months to 1 year (RR=1.60; 95% CI: 1.14-2.25; I2=27%; n=5533 participants). Compared with placebo, TCM external application was effective in reducing nicotine withdrawal symptoms, and the effect was gradually stable and obvious in the fourth week (MD= -4.46; 95% CI: -5.43 - -3.49; n=165 participants). Twelve RCTs reported adverse events as outcome indicators for safety evaluation, and no serious adverse events occurred. CONCLUSIONS: Despite the methodological limitations of the original studies, our review suggests that TCM intervention shows potential effectiveness on the continuous abstinence rate. Extending the intervention time can enhance the effect of TCM on nicotine withdrawal symptoms. Referred to adverse events, more data for safety evaluation are required.

18.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4130-4136, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802781

RESUMO

Twelve compounds were isolated from Liquidambaris Resina by silica gel column chromatography and thin layer chromatography. Their structures were identified on the basis of spectral data, electron capture detector data, and physicochemical properties as(2'R, 3'R)-2',3'-dihydroxy-hydrocinnamyl-(E)-cinnamate(1),(E)-cinnamyl-(E)-cinnamate(2), cinnamic acid(3), 28-norlup-20(29)-en-3-one-17ß-hydroperoxide(4), erythrodiol(5), 13ß,28-epoxy-30-hydroxyolean-1-en-3-one(6),(3ß)-olean-12-ene-3,23-diol(7), 2α,3α-dihydroxy-olean-12-en-28-oic acid(8), 28-hydroxyolean-12-en-3-one(9), 3-epi-oleanolic acid(10), 3-oxo-oleanolic acid(11), and hederagenin(12). Compound 1 was a new cinnamic acid ester derivative and compounds 2-4,6-8, and 12 were isolated from Liquidambaris Resina for the first time. Compounds 4, 5, 10, and 12 exerted inhibitory effects on the proliferation of human umbilical vein endothelial cells(HUVEC) with the IC_(50) values of(17.43±2.17),(35.32±0.61),(27.50±0.80), and(46.30±0.30) µmol·L~(-1), respectively.


Assuntos
Ácido Oleanólico , Triterpenos , Humanos , Células Endoteliais , Ésteres , Cinamatos , Triterpenos/química , Estrutura Molecular
19.
Hortic Res ; 10(10): uhad177, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37868621

RESUMO

The hormone ethylene is crucial in the regulation of ripening in climacteric fruit, such as bananas. The transcriptional regulation of ethylene biosynthesis throughout banana fruit ripening has received much study, but the cascaded transcriptional machinery of upstream transcriptional regulators implicated in the ethylene biosynthesis pathway is still poorly understood. Here we report that ethylene biosynthesis genes, including MaACS1, MaACO1, MaACO4, MaACO5, and MaACO8, were upregulated in ripening bananas. NAC (NAM, ATAF, CUC) transcription factor, MaNAC083, a ripening and ethylene-inhibited gene, was discovered as a potential binding protein to the MaACS1 promoter by yeast one-hybrid screening. Further in vitro and in vivo experiments indicated that MaNAC083 bound directly to promoters of the five ethylene biosynthesis genes, thereby transcriptionally repressing their expression, which was further verified by transient overexpression experiments, where ethylene production was inhibited through MaNAC083-modulated transcriptional repression of ethylene biosynthesis genes in banana fruits. Strikingly, MaMADS1, a ripening-induced MADS (MCM1, AGAMOUS, DEFICIENS, SRF4) transcription factor, was found to directly repress the expression of MaNAC083, inhibiting trans-repression of MaNAC083 to ethylene biosynthesis genes, thereby attenuating MaNAC083-repressed ethylene production in bananas. These findings collectively illustrated the mechanistic basis of a MaMADS1-MaNAC083-MaACS1/MaACOs regulatory cascade controlling ethylene biosynthesis during banana fruit ripening. These findings increase our knowledge of the transcriptional regulatory mechanisms of ethylene biosynthesis at the transcriptional level and are expected to help develop molecular approaches to control ripening and improve fruit storability.

20.
Int J Biol Macromol ; 253(Pt 6): 127144, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802454

RESUMO

Sucrose, a predominant sweetener in banana (Musa acuminata) fruit, determines sweetness and consumer preferences. Although sucrose phosphate synthase (SPS) is known to catalyze starch conversion into sucrose in banana fruit during the ripening process, the SPS regulatory mechanism during ripening still demands investigation. Hence, this study discovered that the MaSPS1 expression was promoted during ethylene-mediated ripening in banana fruit. MaNAC19, recognized as the MaSPS1 putative binding protein using yeast one-hybrid screening, directly binds to the MaSPS1 promoter, thereby transcriptionally activating its expression, which was verified by transient overexpression experiments, where the sucrose synthesis was accelerated through MaNAC19-induced transcription of MaSPS1. Interestingly, MaXB3, an ethylene-inhibited E3 ligase, was found to ubiquitinate MaNAC19, making it prone to proteasomal degradation, inhibiting transactivation of MaNAC19 to MaSPS1, thereby attenuating MaNAC19-promoted sucrose accumulation. This study's findings collectively illustrated the mechanistic basis of a MaXB3-MaNAC19-MaSPS1 regulatory module controlling sucrose synthesis during banana fruit ripening. These outcomes have broadened our understanding of the regulation mechanisms that contributed to sucrose metabolism occurring in transcriptional and post-transcriptional stages, which might help develop molecular approaches for controlling ripening and improving fruit quality.


Assuntos
Frutas , Musa , Frutas/metabolismo , Musa/genética , Musa/metabolismo , Regiões Promotoras Genéticas/genética , Sacarose/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...